11 research outputs found

    Sensory Information Utilization and Time Delays Characterize Motor Developmental Pathology in Infant Sitting Postural Control

    Get PDF
    Sitting is one of the first developmental milestones that an infant achieves. Thus measurements of sitting posture present an opportunity to assess sensorimotor development at a young age. Sitting postural sway data were collected using a force plate, and the data were used to train a neural network controller of a model of sitting posture. The trained networks were then probed for sensitivity to position, velocity, and acceleration information at various time delays. Infants with typical development developed a higher reliance on velocity information in control in the anterior-posterior axis, and used more types of information in control in the medial-lateral axis. Infants with delayed development, where the developmental delay was due to cerebral palsy for most of the infants in the study, did not develop this reliance on velocity information, and had less reliance on short latency control mechanisms compared with infants with typical development

    Approximate entropy used to assess sitting postural sway of infants with developmental delay

    Get PDF
    Infant sitting postural sway provides a window into motor development at an early age. The approximate entropy, a measure of randomness, in the postural sway was used to assess developmental delay, as occurs in cerebral palsy. Parameters used for the calculation of approximate entropy were investigated, and approximate entropy of postural sway in early sitting was found to be lower for infants with developmental delay in the anterior–posterior axis, but not in the medial–lateral axis. Spectral analysis showed higher frequency features in the postural sway of early sitting of infants with typical development, suggesting a faster control mechanism is active in infants with typical development as compared to infants with delayed development, perhaps activated by near-fall events

    Nonlinear analysis of sitting postural sway indicates developmental delay in infants

    Get PDF
    Background Upright sitting is one of the first developmental motor milestones achieved by infants, and sitting postural sway provides a window into the developing motor control system. A variety of posture sway measures can be used, but the optimal measures for infant development have not been identified. Methods We have collected sitting postural sway data from two groups of infants, one with typical development (n = 33), and one with delayed development and either diagnosed with or at risk for cerebral palsy (n = 26), when the infants had developed to the point where they could just maintain sitting for about 10 s. Postural sway data was collected while infants were sitting on a force platform, and the center of pressure was analyzed using both linear and nonlinear measures. Findings Our results showed that a nonlinear measure, the largest Lyapunov exponent, was the only parameter of postural sway that revealed significant differences between infants with typical versus delayed development. The largest Lyapunov exponent was found to be higher for typically developing infants, indicating less repeated patterning in their movement coordination. Interpretations A nonlinear measure such as largest Lyapunov exponent may be useful as an identifier of pathology and as a yardstick for the success of therapeutic interventions

    Use of information entropy measures of sitting postural sway to quantify developmental delay in infants

    Get PDF
    Background: By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods: In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results: The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion: The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants

    Development of Upper Body Coordination During Sitting in Typically Developing Infants

    Get PDF
    Our goal was to determine how the actions of the thorax and the pelvis are organized and coordinated to achieve independent sitting posture in typically developing infants. The participants were 10 typically developing infants who were evaluated longitudinally from first onset of sitting until sitting independence. Each infant underwent nine testing sessions. The first session included motor evaluation with the Peabody test. The other eight sessions occurred over a period of 4 mo where sitting behavior was evaluated by angular kinematics of the thorax and the pelvis. A physical therapist evaluated sitting behavior in each session and categorized it according to five stages. The phasing relationship of the thorax and the pelvis was calculated and evaluated longitudinally using a one-way analysis of variance. With development, the infants progressed from an in-phase (moving in the same direction) to an out-of-phase (moving in an opposite direction) coordinative relationship between the thorax and the pelvis segments. This change was significant for both sagittal and frontal planes of motion. Clinically, this relationship is important because it provides a method to quantify infant sitting postural development, and can be used to assess efficacy of early interventions for pediatric populations with developmental motor delays

    Nonlinear Dynamics of Infant Sitting Postural Control

    Get PDF
    Sitting is one of the first developmental milestones that an infant achieves. Thus measurements of sitting posture present an opportunity to assess sensorimotor development at a young age, in order to identify infants who might benefit from therapeutic intervention, and to monitor the efficacy of the intervention. Sitting postural sway data was collected using a force plate from infants with typical development, and from infants with delayed development, where the delay in development was due to cerebral palsy in most of the infants in the study. The center of pressure time series from the infant sitting was subjected to a number of different analyses, both traditional linear analyses, and a number of nonlinear analyses based on information theory, nonlinear dynamics, and artificial intelligence. The traditional linear measures of postural sway did not detect a difference between the two groups, but several of the nonlinear measures did detect differences. Postural sway of infants with delayed development was found to have more repeated patterns in their postural sway, and to control posture on a slower time scale than infants with typical development. Additionally, spectral analysis was performed, and high frequency (20 -30 Hz) features were observed in the postural sway of infants with typical development that were not apparent in the postural sway of infants with delayed development, and these high frequency features were particularly prominent in the posterior sway in the anterior-posterior axis in early sitting. The origins of the features are not certain, but the fastest control is from stretch reflexes, and stretch reflexes may be contributing to the postural sway control in infant sitting. Dynamic systems theory, as applied in developmental psychology, suggests that infants need to explore a wide range of postural sway control muscle synergies, in order that the upright sitting behavior emerge. Infants with cerebral palsy often have muscle spasticity associated with altered stretch reflexes, and this may limit the exploration of a wide a range of postural control strategies, as compared to infants with typical development

    Complexity of Postural Control in Infants: Linear and Nonlinear Features Revealed by Principal Component Analysis

    No full text
    Nonlinear analysis of standing postural control in healthy adults reveals a chaotic structure of the center of pressure time series. Independent sitting is the first controlled posture during development, and can also be examined for nonlinear dynamics. We performed a principal component analysis on variables extracted from the center of pressure (COP) time series of infants sitting independently. Our purpose was to describe factors that could be interpreted for clinical use in evaluating postural control for infants, and determine if nonlinear measures provide additional information about postural control not quantified by standard linear measures. Four factors were identified: the area or amount of postural sway and the overall variability of the sway (linear); the complexity of the sway in the anterior-posterior direction (nonlinear); power variability or velocity (linear); and the complexity of the sway in the medial-lateral direction (nonlinear). Nonlinear measures, which are used to examine complexity in many physiological systems, describe the variability of postural control that is not described by linear measures. Nonlinear measures may be critical in determining the developing health of the postural control system in infants, and may be useful in early diagnosis of movement disorders. The measurement of nonlinear dynamics of postural control reveals a chaotic structure of postural control in infancy, which may be an indicator of healthy postural control throughout development

    Nonlinear Detrended Fluctuation Analysis of Sitting Center-of-Pressure Data as an Early Measure of Motor Development Pathology in Infants

    No full text
    Upright sitting is one of the first motor skills an infant learns, and thus sitting postural control provides an early window into the infant’s motor development. Early identification of infants with motor developmental delay, such as infants with cerebral palsy, allows for early therapeutic intervention by physical therapists. Early intervention is thought to produce better outcomes, due to greater neural plasticity in younger infants. Postural sway, as measured by a force plate, can be used to objectively and quantitatively characterize infant motor control during sitting. Pathology, such as cerebral palsy, may alter the fractal properties of motor function. Often physiologic time series data, including infant sitting postural sway data, is mathematically non-stationary. Detrended Fluctuation Analysis (DFA) is useful to characterize the fractal nature of time series data because it is does not assume stationarity of the data. In this study we found that suitable selection of the order of the detrending function improves the performance of the DFA algorithm, with a higher order polynomial detrending better able to distinguish infant sitting posture time series data from Brown noise (random walk), and first order detrending better able to distinguish infants with motor delay (cerebral palsy) from infants with typical development

    Use of information entropy measures of sitting postural sway to quantify developmental delay in infants

    No full text
    Abstract Background By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants.</p
    corecore